


# Applied Energy Symposium MIT A+B 2020

**Co-organized with Harvard** AUG 13 - 14, 2020 · MIT, Boston, USA



|                                                                                                                | and the second second |
|----------------------------------------------------------------------------------------------------------------|-----------------------|
|                                                                                                                |                       |
|                                                                                                                |                       |
|                                                                                                                |                       |
| the second s |                       |

.....

# Welcome



#### Welcome to the Applied Energy Symposium: MIT A+B.

The IPCC report "Global Warming of 1.5°C" (Oct. 2018) issued a dire warning that unless CO2 emissions are halved by 2030, devastating changes, which will be sooner than expected and irreversible, will occur in oceans and on land. Time is running out for transitioning to new energy systems globally. Logic and numbers show that the world must take a two-step approach: (A) deploy existing, industrially proven technologies, namely solar, wind and nuclear base load at an unprecedented scale and pace, from now to 2050 -- when a house catches fire, firemen must run to the closest hydrants and stop disputing which water stream would be purer; and (B) develop new concepts and technologies that may replace the dirtier parts of (A) post-2050, at terawatt scale.

The Applied Energy Symposium: MIT "A+B" (MITAB) is dedicated to the accelerated deployment of (A), and new concepts and emerging technologies for (B). For (A), reducing capital and operating costs, managing social dynamics, and minimizing environmental impact while maintaining extreme productivity are key; automation, artificial intelligence, social mobilization, governmental actions and international coordination will provide essential boosts. For (B), we seek new concepts and emerging technologies (e.g. fusion power engineering, superconducting transmission, etc.) that stand a chance to scale to terawatts after 30 years, i.e. "baby technologies" can grow to adulthood in 20-30 years. The AEAB2019 is organized by Massachusetts Institute of Technology, Harvard University, and Applied Energy Innovation Institute (AEii).

We look forward to meeting you online.

Chairs of MITAB2020

Prof. Ju Li Massachusetts of Institute of Technology Prof. Michael J. Aziz Harvard University Prof. Jerry Yan Editor-in-chief of Applied Energy

# Contents

- Welcome to MIT A+B 2020
- Committees
- Acknowledgments
- Program at a Glance
- Opening Remarks and Plenary Keynotes
- Topic Session
- Interview Session
- Oral Presentations
- Poster Presentations

# Committees

#### **CONFERENCE CHAIRS**

Prof. Ju Li (Co-Chair) Massachusetts Institute of Technology Prof. Michael J. Aziz (Co-Chair) Harvard University Prof. Jerry Yan (Co-Chair) Editor-in-Chief of Applied Energy

#### ORGANIZING COMMITTEE

Dr. Ray (Zhenhua) Rui (Chair), Massachusetts Institute of Technology Prof. Xin Li (Co-chair), Harvard University Dr. Audun Botterud (Vice-Chair), Massachusetts Institute of Technology Prof. Alexander Slocum, Massachusetts Institute of Technology Prof. Fengqi You, Cornell University Prof. Lei Zou, Virginia Polytechnic Institute and State University Prof. Sarah Marie Jordaan, Johns Hopkins University Prof. Buz Barstow, Cornell University

# Prof. Koroush Shirvan, Massachusetts Institute of Technology Prof. Michael Short, Massachusetts Institute of Technology Prof. Mingda Li, Massachusetts Institute of Technology Prof. Sili Deng, Massachusetts Institute of Technology Dr. Emre Gencer, Massachusetts Institute of Technology Prof. Bolun Xu, Columbia University Prof. Hadi Hajibeygi, Delft University of Technology Prof. Le Xie, Texas A&M University Dr. Drew Pomerantz, Schlumberger Prof. Hailong Li, Mälardalen University

#### INTERNATIONAL SCIENTIFIC ADVISORY COMMITTEE

| Prof. Robert Armstrong, Massachusetts Institute of          | Prof. D  |
|-------------------------------------------------------------|----------|
| Technology                                                  | Prof. H  |
| Prof. Michael Aziz, Harvard University                      | Prof. D  |
| Prof. Peter Bauer, University of Notre Dame                 | Prof. Ju |
| Prof. Richard Braatz, Massachusetts Institute of Technology | Prof. Ka |
| Prof. Jacopo Buongiorno, Massachusetts Institute of         | Prof. A  |
| Technology                                                  | Techno   |
| Prof. Gang Chen, Massachusetts Institute of Technology      | Prof. Ya |
| Prof. Yet-Ming Chiang, Massachusetts Institute of           | Prof. Zł |
| Technology                                                  | Prof. N  |
| Prof. Aoife Foley, Queen's University Belfast               | Prof. Je |
| Dr. Birol Dindoruk, Chief Scientist, Shell                  | Prof. Je |
| Prof. Eric Loth, University of Virginia                     | Prof. H  |
| Prof. Lee Lynd, Dartmouth College                           | Prof. Bi |
| Prof. Ruben Juanes, Massachusetts Institute of Technology   | Prof. Je |

Prof. Daniel Kammen, University of California, Berkeley Prof. Hammed Metghalchi, Northeastern University Prof. Daniel Nocera, Harvard University Prof. Ju Li, Massachusetts Institute of Technology Prof. Kaushik Rajashekara, University of Houston Prof. Alexander Slocum, Massachusetts Institute of Technology Prof. Yang Shao-Horn, Massachusetts Institute of Technology

Prof. Yang Shao-Horri, Massachusetts institute of Technology
Prof. Zhonglin Wang, Georgia Institute of Technology
Prof. Michael Stanley Whittingham, Binghamton University
Prof. Jerry Woodall , University of California Davis
Prof. Jerry Yan, Royal Institute of Technology, Stockholm
Prof. Hongxing Yang , Hong Kong Polytechnic University
Prof. Bilge Yildiz, Massachusetts Institute of Technology
Prof. Jennifer Wilcox, Worcester Polytechnic Institute

# Acknowledgments





| Day 1: August 13, 2020 (Boston Time)                                     |                                                                                          |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| 8:00 -8:10 Chair Welcome                                                 |                                                                                          |  |  |
| 8:10-8:20                                                                | Opening Remarks                                                                          |  |  |
| 8:20-9:10                                                                | Stable Salt Reactors – A New Platform Technology in Nuclear Fission                      |  |  |
| 9:10-10:00                                                               | Nanoscale Design for High Energy Batteries                                               |  |  |
| 10:00-10:25                                                              | Coffee/Tea Break                                                                         |  |  |
| 10:25-11:15                                                              | The Green Energy Revolution is Finally Here                                              |  |  |
| 11:15-12:05                                                              | Energy Transformations to Meet the Climate Challenge: Advice from the National Academies |  |  |
| 12:05-13:10                                                              | Lunch Break                                                                              |  |  |
| 13:10-15:10                                                              | Energy Policy Session                                                                    |  |  |
| 15:10-15:35                                                              | Coffee/Tea Break                                                                         |  |  |
| 15:35-17:35                                                              | Renewable Electricity Generation and Smart Grids Session                                 |  |  |
| 17:35-18:30                                                              | Dinner Break                                                                             |  |  |
| 18:30-20:30                                                              | Innovation Session                                                                       |  |  |
|                                                                          | Day 2: August 14, 2020 (Boston Time)                                                     |  |  |
| 8:00-10:00                                                               | Carbon Capture, Utilization, Storage Session                                             |  |  |
| 10:00-10:25                                                              | Coffee/Tea Break                                                                         |  |  |
| 10:25-12:25                                                              | Oil and Gas Decarbonization Session                                                      |  |  |
| 12:25-13:10                                                              | Lunch Break                                                                              |  |  |
| 13:10-15:10                                                              | Energy Storage Session                                                                   |  |  |
| 15:10-15:35                                                              | Coffee/Tea Break                                                                         |  |  |
| 15:35-17:35                                                              | Hydrogen Session                                                                         |  |  |
| Pre-recorded interview sessions                                          |                                                                                          |  |  |
| Pre-recorded 6 Oral Sessions and 2 E-Poster Tracks<br>(Page 13~ Page 20) |                                                                                          |  |  |

# Opening Remarks and Plenary Keynotes

## **Opening Remarks**

#### 8:10-8:20, August 13

Robert C. Armstrong is MITEI's director and the Chevron Professor of Chemical Engineering. A member of the MIT faculty since 1973, Armstrong served as head of the Department of Chemical Engineering from 1996 to 2007 and has directed MITEI since 2013, after serving as the organization's deputy director from 2007-2013 with founding director Ernest Moniz. His research is focused on pathways to a low-carbon energy future.

Armstrong has been elected into the American Academy of Arts and Sciences (2020) and the National Academy of Engineering (2008). He received the 2006 Bingham Medal from the Society of Rheology, which is devoted to the study of the science of deformation and flow of matter, and the Warren K. Lewis Award and the Professional Progress Award in 1992, both from the American Institute of Chemical Engineers.

Armstrong was a member of MIT's Future of Natural Gas and Future of Solar Energy study groups. He advised the teams that developed MITEI's most recent reports, The Future of Nuclear Energy in a Carbon-Constrained World (2018) and Insights into Future Mobility (2019), and is co-chairing the new MITEI study, The Future of Storage. He co-edited Game Changers: Energy on the Move with former U.S. Secretary of State George P. Shultz.



**Prof. Robert Armstrong** 

Director, MIT Energy

Initiative

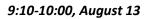
Massachusetts Institute

of Technology

Dr. Ian Scott CEO Moltex Energy

## Stable Salt Reactors - A New Platform Technology in Nuclear Fission

#### 8:20-9:10, August 13


Stable Salt Reactors (SSR's) are a new platform technology in nuclear fission. They are based on the globally patented breakthrough in understanding that nuclear reactors could gain all the enormous intrinsic safety and cost benefits of using molten salt fuel by simply putting that molten fuel into essentially conventional fixed fuel assemblies. This eliminates at a stroke the new hazards, and hence costs, of having to pump that intensely radioactive fuel around a chemical engineering plant that would be extraordinarily challenging to maintain and which would require a certainty of not leaking never achieved before in such a plant.

The first reactor to be developed within this platform is the SSR-W where the W stands for wasteburner. It is a fast spectrum reactor fueled with a mixture of higher actinides extracted from spent conventional nuclear fuel. Very low purity of those higher actinides is acceptable in the SSR-W fuel, indeed it is preferred for non-proliferation reasons. As a result, a radically simpler process for extracting those actinides from spent fuel can be used. This process (WATTS, Waste To Stable Salts) has been patented and is now under development in Canada in conjunction with Canadian Nuclear Laboratories.

The "First of a Kind" SSR-W, a 300MWe single unit, is being developed in conjunction with New Brunswick Power in Canada with the intention of deployment at the Point Lepreau reactor site before the end of the decade. Canada would then become the center of the global export market for this reactor. The design is part way through the Canadian Nuclear Safety Commission's Vendor Design Review. This early regulatory engagement has been of great value in identifying and, to the extent possible, eliminating design factors that might slow the licensing of the reactor. New details of the design following this regulatory engagement will be shared during this talk.

# Opening Remarks and Plenary Keynotes

## Nanoscale Design for High Energy Batteries



The demand from portable electronics and electric vehicles call for high energy batteries beyond the current lithium ion batteries. Here I will present our recent progress on materials and interfacial design to enable much high energy density batteries, which include 1) High capacity Si anodes with success in commercialization; 2) Li metal anodes: host and interface design to over the lithium metal dendrite formation and interfacial instability; 4) Sulfur as an earth abundant material for high capacity cathodes; 4) Our pioneering development of cryogenic electron microscopy for understanding the battery materials and solid-electrolyte interphase down to atomic scale resolution.

**Prof. Yi Cui** Stanford University



**Prof. Daniel Kammen** University of California, Berkeley

## The Green Energy Revolution is Finally Here

#### 10:25-11:15, August 13

COVID-19 has altered energy consumption patterns worldwide, and highlighted both inequality and systemic racism, including in the energy field.

A clean energy research and deployment agenda can greatly facilitate the movement to a just and inclusive society. In this work I highlight both theoretical and implementation strategies that are built around key synergies between clean energy and water, and social justice. This nexus opens important new avenues for use-inspired basic and applied research.

In this paper we draw on research in the U.S., and from East Africa and Southeast Asia, where the majority of the roughly 800 million people without electricity access live today. In the United States, California, New Mexico, and New York (over 40% of national GDP) have committed to a 100% renewable energy future (by ~ 2045). Overseas an increasing number of nations and subnational regions have committed to this goal.

In exploring the synergies between a green economy and social equity, we find that it is either impossible, or far more difficult and costlier, to design, socialize, and implement the needed energy transition to meet climate goals without making equity a co-equal goal. We draw on cases ranging from solar energy and electric vehicle deployment in low-income communities, to promoting social justice and economic opportunities for women and oppressed minority groups through distributed clean-energy powered mini-grids, to the integration of climate friendly housing and transportation policies. This work provides strong evidence of the economic benefits of integrated design of infrastructure and policy around the co-benefits of between social and environmental goals.

# Opening Remarks and Plenary Keynotes



**Dr. Marcia McNutt** President The U.S. National Academy of Sciences

## Energy Transformations to Meet the Climate Challenge: Advice from the National Academies

## 11:15-12:05, August 13

For decades, scientists have understood that the key to maintaining a stable climate for Earth is to reduce, if not eliminate, fossil fuel emissions from the energy sector. Some fraction of emissions reductions (~30%) can already be achieved with existing technology – the "low-hanging fruit." Another 50% of emissions reductions can be accomplished with known solutions, but will require much more effort. The fact that such solutions are not yet widely deployed presents interesting questions for social scientists, including economists, political scientists, and behaviorists. A complete solution to the last 20% of the emissions problem will require overcoming significant challenges, but there are some game-changers on the horizon that can meet our current demands.

**Prof. Ju Li** Massachusetts Institute of Technology

## **Moderators**



**Prof. Michael J. Aziz** Harvard University

# Energy Policy 13:10-15:10, August 13



Dr. Lourdes Melgar

Massachusetts Institute of Technology

<u>The Missing Link to Accelerate</u> <u>Energy Transition: building socio-</u> <u>political support in the era of</u> <u>post-truth</u>



**Prof. Robert Lowe** University College London

Lost Generation: System Resilience and Flexibility



Dr. Rachel Meidl

**Rice University** 

<u>Circular Economy, Waste</u> <u>Management, and the Energy</u> <u>Transition: Policies and Practices</u> <u>to Enable Sustainability and</u> <u>Circularity</u>



Moderator Prof. Sarah Marie Jordaan Johns Hopkins University

## **Renewable Electricity Generation and Smart Grids**



15:35-17:35, August 13

Prof. Lambertus Hesselink

Stanford University

Dispatchable Solar and Wind Power Without Batteries



**Prof. Magnus Korpås** Norwegian University of Science and Technology

<u>How Costs are Recovered in</u> <u>Electricity Markets with Wind,</u> <u>Solar and Storage Plants: An</u> <u>Analytical Approach</u>



# Prof. David Laverty

Queen's University Belfast

Open Source Measurement Technologies for Electrical Distribution Networks

#### Moderator

#### Dr. Audun Botterud

Massachusetts Institute of Technology

# Innovation

18:30-20:30, August 13



Prof. Z. Jason Ren Princeton University

<u>Using Low-Cost Renewable</u> <u>Energy for Carbon Valorization</u>



# Prof. Melanie Tetreault-Friend

McGill University

<u>CSPonD: Demonstration of a 25</u> <u>kW dispatchable solar power</u> <u>system</u>



Prof. Jinhui Li

Tsinghua University

Selective Recovery of Lithium from a Spent Lithium-ion Battery by Mechanochemical Induced Solid-phase Oxidation



Moderator

**Dr. Emre Gencer** Massachusetts Institute of Technology

Carbon Capture, Utilization, Storage

8:00-10:00 am, August 14



Dr. Sergey Paltsev

Massachusetts Institute of Technology

Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation



Prof. Christian Lastoskie

University of Michigan

Decarbonizing Freight Transport: Mobile Carbon Capture from Heavy Duty Vehicles



#### Prof. Betar Gallant

Massachusetts Institute of Technology

Opportunities for intersection between electrochemistry and CO2 sequestration



#### Moderator

Prof. Hadi Hajibeygi

Delft University of Technology

## **Oil and Gas Decarbonization**

10:25-12:25 am, August 14

Energy Storage 13:10-15:10, August 14



Dr. Murray Reed

CEO, QLM Technology

Single-photon Lidar gas imagers for practical and widespread continuous methane monitoring



## Prof. Robert Kleinberg

Columbia University

<u>Technological Innovation and</u> <u>Environmental Regulation:</u> <u>Methane Emissions from Oil &</u> <u>Gas Facilities</u>



**Prof. Mark Zoback** Stanford University

<u>Oil and Gas in the Era of</u> <u>Decarbonization</u>



# Moderator Dr. Drew Pomerantz

Schlumberger



Prof. Ludger Josef Fischer

Lucerne University of Applied Sciences and Arts

<u>Sensible & Seasonal Thermal</u> <u>Energy</u>



Prof. Simona Onori

Stanford University

<u>Grid-level Battery Energy</u> <u>Storage: Characterization of Grid</u> <u>Applications for Physics-Based</u> <u>Modelling, Design Optimization,</u> <u>and Technology Evaluation</u>



**Dr. Said Al-Hallaj** CEO, All Cell Technologies LLC

Recent Developments in Li-ion Battery Pack Thermal Safety



Moderator

**Prof. Xin Li** Harvard University

# Hydrogen 15:35-17:35, August 14



#### Prof. Reinhard Haas

Vienna University of Technology <u>Prospects and Impediments for a</u> <u>sustainable hydrogen-based</u> <u>energy system</u>



#### **Prof. Jeffrey Reed**

University of California Irvine

Prospects for Achieving a Self-Sustaining, Large-Scale Renewable Hydrogen Sector in California



## Dr. Chukwunwike Iloeje

Argonne National Laboratory

Implications of power-to-gas energy storage for CO2 mitigation and enhanced energy grid flexibility



#### Moderator

**Prof. Buz Barstow** 

**Cornell University** 

# **Interview Session**

## **Promoting Innovation and Entrepreneurship for Economic Nuclear Energy**

(Pre-recorded)

\*Please click title to view video



### **Dr. Ashley Finan**

The Director of the National Reactor Innovation Center

Ashley Finan is the Director of the National Reactor Innovation Center. In this role, she is responsible for overseeing initiatives to provide resources to reactor innovators to test, demonstrate, and conduct performance assessments to accelerate the deployment of advanced nuclear technology concepts.

#### Moderators



Dr. Cheng Sun Senior Staff Scientist Idaho National Laboratory



**Prof. Koroush Shirvan** Massachusetts Institute of Technology

## **Developing Healthy Innovation and Economy Ecosystem for Clean Energy**

(Pre-recorded)

\*Please click title to view video



#### Dr. Ralph Izzo

Chairman and CEO of Public Service Enterprise Group Inc. (PSEG)

Ralph Izzo has been chairman and chief executive officer of Public Service Enterprise Group Incorporated (PSEG) since April 2007. Mr. Izzo is a well-known leader within the utility industry, as well as the public policy arena. He is frequently asked to testify before Congress and speak to organizations on matters pertaining to national energy policy.

#### Moderator



**Prof. Michael Golay** Massachusetts Institute of Technology

## **Energy Storage**

| I.D. | Authors                                         | Title                                                                             |
|------|-------------------------------------------------|-----------------------------------------------------------------------------------|
| 36   | Sonja Wogrin, Diego Tejada-Arango               | Show me the money! Energy storage systems between the technically feasible        |
| 30   | Sonja Wogini, Diego rejada-Arango               | and the economically viable                                                       |
| 41   | Laisuo Su and B. Reeja Jayan                    | Surface engineering of battery cathodes via chemical vapor deposition             |
|      |                                                 | polymerization                                                                    |
| 46   | Nan Zhang, Benjamin Leibowicz and Grani         | Optimal residential battery storage operations using robust data-driven           |
|      | Hanasusanto                                     | dynamic programming                                                               |
| 62   | Jia Liu, Xi Chen and Hongxing Yang              | Investigation of hybrid photovoltaic-wind system with battery storage for         |
|      |                                                 | high-rise buildings in Hong Kong                                                  |
| 76   | Chen Wang, Xiaosong Zhang, Tongtong Zhang       | Liquid air energy storage and air separation integration for peak load shifting   |
|      | and Xiaohui She                                 | oxygen production and heating                                                     |
| 78   | Kyle Smith, Md Abdul Hamid, Venkat Pavan        | Exploring multi-scale interactions in Redox flow batteries for resilient energy   |
|      | Nemani and Yite Wang                            | storage                                                                           |
| 88   | Somesh Mohapatra, Bo Qiao, Ryoichi Tatara,      | Quantitative mapping of molecular substituents to macroscopic properties          |
|      | Jeffrey Lopez, Graham M. Leverick, Yoshiki      | leads to mechanistic understanding and optimized oligoethyleneglycol-based        |
|      | Shibuya, Yivan Jiang, Jeremiah A. Johnson, Yang | lithium battery electrolytes                                                      |
|      | Shao-Horn and Rafael Gómez-Bombarelli           |                                                                                   |
| 97   | Hélène Pilorgé, Noah McQueen, Peter Psarras,    | DAC paired with industrial waste heat as a path towards carbon neutrality for     |
| •    | Caleb M. Woodall and Jennifer Wilcox            | the U.S. industrial sector                                                        |
| 125  | Kara Rodby and Fikile Brushett                  | Refining economic arguments for grid-scale energy storage technologies:           |
|      |                                                 | Assessing the levelized cost of vanadium redox flow batteries                     |
| 169  | Jiachen Mao, Mehdi Jafari and Audun Botterud    | The role of battery energy storage in decarbonization of distributed power        |
| 200  |                                                 | systems                                                                           |
| 172  | Keena Trowell, Jocelyn Blanchet, Sam Goroshin,  | Supercritical metal-water reactions for in-situ hydrogen production               |
| 1/2  | David Frost and Jeff Bergthorson                |                                                                                   |
| 175  | Shan Tian, Haoyang He, Oladele Ogunseitan,      | Environmental benefit-detriment thresholds for flow battery energy storage        |
| 2/0  | Julie Schoenung, Scott Samuelsen and Brian      | systems                                                                           |
|      | Tarroja                                         |                                                                                   |
| 178  |                                                 |                                                                                   |
| 1/0  |                                                 | cold recovery                                                                     |
| 185  | Hilary Johnson and Alexander Slocum             | Convolutional energy efficiency metric to identify pumping system                 |
| 105  |                                                 | opportunities                                                                     |
| 208  | Doris Oke, Jennifer Dunn, Troy Hawkins, Doug    | Biofuels with tailored properties (A) for hybrid and plug-in electric vehicles (E |
| 200  | Longman, Hao Cai, Ram Vijayagopal, Lauren       |                                                                                   |
|      | Sittler, Emily Newes, Aaron Brooker and Scott   |                                                                                   |
|      | Curran                                          |                                                                                   |
| 218  | Maha N. Haji, S. John Saidi and Alexander H.    | Analysis of Integrated Pumped Hydro Reverse Osmosis Systems for Iran              |
| 210  | Slocum                                          |                                                                                   |
| 246  | Yasser Ashraf Gandomi, Irina Krasnikova, Mariam | Lithium-conducting Ceramic Membranes for Non-aqueous Redox Flow                   |
| 270  | Pogosova, Sergey Ryazantsev, Keith Stevenson    | Batteries                                                                         |
|      | and Fikile Brushett                             | butteries -                                                                       |
| 252  | Alexis Fenton Jr and Fikile Brushett            | Automating Electroactive Compound Identification to Simplify Electrolyte          |
| 252  |                                                 | Decay Analysis in Energy Storage Devices                                          |
| 296  | Kevin Tenny, Antoni Forner-Cuenca, Yet-Ming     | Understanding physical characteristics of different weave patterns on Redox       |
| 290  |                                                 |                                                                                   |
| 251  | Chiang and Fikile Brushett                      | flow battery operation                                                            |
| 351  | Daxian Cao, Yubin Zhang, Yifei Mo, Yan Wang     | Stable thiophosphate-based all-solid-state lithium batteries through              |
|      | and Hongli Zhu                                  | conformally interfacial nanocoating                                               |

## **Electricity Decarbonization, Power System Flexibility, Smart Grids**

| I.D. | Authors                                          | Title                                                                          |
|------|--------------------------------------------------|--------------------------------------------------------------------------------|
| 25   | Yifei Wang and Yang Cao                          | High performance polymer dielectric coated by assembled montmorillonite        |
| 25   |                                                  | nanosheets for high-temperature energy storage                                 |
|      | Pengshun Li, Yi Zhang and Yi Zhang               | Exploring the uncertainty in trip-based eletricity consumption of E.B.s with a |
| 53   |                                                  | real-world big data from 100% electrification of bus network in Shenzhen,      |
|      |                                                  | <u>China</u>                                                                   |
| 61   | Tyler Ruggles and Ken Caldeira                   | Analysis of reliability & capacities in electric systems with substantial      |
| 01   |                                                  | renewable power                                                                |
| 67   | Destenie Nock, Kavita Surana and Sarah Jordaan   | In-depth analysis of greenhouse gas emissions and air pollutants from electric |
| 07   |                                                  | transmission and distribution systems.                                         |
| 68   | Kavita Surana and Sarah M. Jordaan               | The climate mitigation opportunity behind global power transmission and        |
| 00   |                                                  | distribution                                                                   |
| 95   | Gustavo Vianna Cezar, Thomas Navidi, Elizabeth   | Case study on sustainable farm electricity management                          |
| 95   | Buechler and Ram Rajagopal                       |                                                                                |
|      | Andy Filak, John Reeves, Robert Eykhout, Charles | Opportunity for MIT and Harvard to build an offshore floating wind farm as     |
| 124  | Smith, John Brown and Andrew Zalay               | the cornestone of a distributed renewable energy network to meet campus        |
|      |                                                  | sustainability goals                                                           |
| 132  | Paolo Giani, Stefano Castruccio, Marc Genton     | Technical and climate implications of the deployment of large-scale wind       |
| 152  | and Paola Crippa                                 | <u>farms</u>                                                                   |
| 150  | Daniel Schwabeneder, Carlo Corinaldesi, Georg    | Business cases of flexibility provision of energy aggregators operating in     |
| 150  | Lettner and Hans Auer                            | multiple energy markets                                                        |
| 157  | Mirko Schäfer, Bo Tranberg, Dave Jones and       | Tracing carbon dioxide emissions in the European electricity markets           |
| 157  | Anke Weidlich                                    |                                                                                |
| 184  | Sayanti Mukherjee                                | Towards enhancing grid reliability: A multi-time scale framework to forecast   |
| 104  |                                                  | climate-induced electricity demand growth                                      |
| 198  | Rabab Haider and Anuradha Annaswamy              | Optimal coordination of distributed energy resources in smart grids enabled    |
| 130  |                                                  | by distributed optimization                                                    |
| 207  | Dominic Davis and Michael Brear                  | The role of new & retrofit CCS in achieving deep abatement in Australia's      |
| 207  |                                                  | national electricity market                                                    |
|      | Miguel Gijon-Rivera, Carlos Rivera-Solorio, Iván | Scale-up study of hybrid solar parabolic trough concentrators to reduce the    |
| 221  | Patricio Acosta Pazmiño and Jose Ignacio         | emissions of co2 in a Mexican industry sector from now to 2030                 |
|      | Huertas Cardozo                                  |                                                                                |
| 256  | Jacques de Chalendar and Sally Benson            | Recent results from energy and emissions tracking in the U.S. electricity      |
| 250  |                                                  | <u>system</u>                                                                  |
| 207  | Angineh Zohrabian and Kelly Sanders              | Demand response in water supply and wastewater systems: what are the           |
| 307  |                                                  | opportunities?                                                                 |
| 360  | Prakash Chinnakutti                              | Design and Analysis of Uninterrupted Power Grid using hybridnation of          |
|      |                                                  | Sustainable Energies                                                           |

## Thermal

|      |                                                 | 1                                                                              |
|------|-------------------------------------------------|--------------------------------------------------------------------------------|
| I.D. | Authors                                         | Title                                                                          |
| 121  | Hannah Doran, Gioia Falcone and David           | Potential for effective recovery of decay heat from radioactive waste residing |
| 121  | Sanderson                                       | at the back end of the fuel cycle                                              |
| 155  | Charles Forsberg                                | Base-load nuclear systems for variable electricity and heat with heat storage  |
| 166  | Farzin Golzar and Semida Silveira               | Implications of improved heat recovery in buildings – a case study of          |
| 100  |                                                 | Stockholm                                                                      |
| 204  | Charles Forsberg and Bruce Dal                  | Replacing liquid fossil fuels with liquid biofuels from large-scale nuclear    |
| 204  |                                                 | biorefineries                                                                  |
| 205  | Xinyi Li, Ting Ma, Qiuwang Wang, Terrence       | Investigation on phase-change thermal management based on a pore-scale         |
| 205  | Simon and Tianhong Cui                          | lattice Boltzmann model                                                        |
| 211  | Daniel Halmschlager, Anton Beck, Martin Koller, | Combined optimization for retrofitting of heat recovery and thermal energy     |
| 211  | Sophie Knöttner and Rene Hofmann                | supply in industrial systems                                                   |
| 220  | Tongtong Zhang, Xiaohui She and Yulong Ding     | Cryogenic thermoelectric generation with cold recovery from liquid air energy  |
| 220  |                                                 | <u>storage</u>                                                                 |
| 312  | Lingshi Wang, Xiaobing Liu, Kyle Gluesenkamp    | A novel high energy density mobile sorption-based thermal battery for low-     |
| 512  | and Zhiyao Yang                                 | grade thermal energy storage                                                   |
| 315  | Brian Bischoff, Lingshi Wang, Xiaobing Liu, Van | Experimental Investigation of a Novel Membrane-based Condensing Heat           |
| 515  | Baxter and Kyle Gluesenkamp                     | Exchanger used for High Efficiency Furnaces                                    |
| 323  | Enrique Velez, W. Robb Stewart, Ralph Wiser     | Pathways to cost-effective advanced nuclear technology                         |
| 525  | and Koroush Shirvan                             |                                                                                |
| 333  | Shiddartha Paul, Daniel Schwen, Michael Short   | Ni/Inconel multimetallic layered composites for fluoride-salt high-            |
| 333  | and Kasra Momeni                                | temperature reactor                                                            |
| 347  | Di Huang, Danjie Mai, Fulong Zhao and Sichao    | Study on heat transfer characteristics of space liquid droplet radiator        |
| 547  | Tan                                             |                                                                                |
| 352  | Liang Jun Zheng, Dong Hee Kang, Na Kyong Kim,   | Combine evaporative cooling technology with thermoelectric generator to        |
| 352  | Young Jik Youn and Hyun Wook Kang               | improve the efficiency of waste heat recovery                                  |

## **Innovation Now**

| I.D. | Authors                                                              | Title                                                                          |
|------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 17   | Han N. Huynh and V. Faye McNeill                                     | Heterogeneous chemistry of CaCO3 aerosols with HNO3 and HCl and its            |
| 17   |                                                                      | potential impact on stratospheric Ozone                                        |
| 40   | Rina Tannenbaum                                                      | MOF-catalyzed hydrodeoxygenation of biomass to renewable fuels                 |
| 69   | Margaret Smith and Chukwunwike Iloeje                                | Modeling renewable energy storage with plasma catalysis                        |
|      | Pietro Bartocci, Lorenzo Riva, Henrik Kofoed                         | How to produce green coke?                                                     |
|      | Nielsen, Qing Yang, Haiping Yang, Oyvind                             |                                                                                |
| 77   | Skreiberg, Liang Wang, Giulio Sorbini, Eid Gul,                      |                                                                                |
|      | Marco Barbanera and Francesco Fantozzi                               |                                                                                |
|      | Mansour Tijani, Moheddin Elgarni and Nader                           | mixed metal oxides in chemical looping combustion: reactivity, stability and   |
| 83   | Mahinpey                                                             | pilot studies                                                                  |
|      | Hyoyoung Lee                                                         | Phase-selectively disordered blue TiO2 for artificial photosynthesis: convert  |
| 89   | ,,, ,                                                                | CO2 into oxygen and pure C.O. under water                                      |
|      | Tuhin Suvra Khan, Fatima Jalid, Imteyaz Alam                         | Biogas reforming for sustainable production of fuel and chemicals:             |
| 90   | and Md. Ali Haider                                                   | mechanistic study using ab-initio microkinetic modeling                        |
|      | Predrag Spasojevic                                                   | Direct renewable energy application to hybrid water filtration and electricity |
| 111  |                                                                      | generation facility                                                            |
| 141  | Bruno Cossu                                                          | Air turbine driven by a wave powered suction pump                              |
|      | Conrad Allan Jay Pantua, John Kaiser Calautit and                    | Energy generation and disaster resiliency (EGAR) modelling framework for       |
| 183  | Yupeng Wu                                                            | extreme weather resilient communities                                          |
|      | Sreedath Panat and Kripa Varanasi                                    | electrostatic dust removal from solar panels for enhanced operational          |
| 213  | Siecuatii Fanat anu Kripa Varanasi                                   | efficiency                                                                     |
|      | Sergio Granados-Focil, Diana De Porcellinis,                         | Transitioning past perfluorinated polymers: Sulfonated (polybiphenyl           |
| 219  | Michael J.Aziz                                                       | alkylene)s as membrane separators for alkaline redox flow batteries            |
|      | Alexa Schmitz, Brooke Pian, Sean Medin, Esteban                      | Extracting rare earth elements with engineered microorganisms for              |
| 232  | Gazel and Buz Barstow                                                | sustainable energy                                                             |
|      | Xinba Li, Panagiotis Mitsopoulos, Yue Yin and                        | Synchronous wind and wave-height estimates from satellite altimeter senso      |
| 245  | Malaquias Peña                                                       | and buoy data for offshore wind energy project monitoring                      |
|      | Kangpyo So, Penghui Cao, Yang Yang, Jong Gil                         | One dimensional (1D) nanotubes as effective defect sinks in metals exhibit     |
| 264  |                                                                      | greatly reduced radiation damage                                               |
| 204  | Park, Mingda Li, Long Yan, Jing Hu, Mark Kirk,                       |                                                                                |
|      | Meimei Li, Young Hee Lee, Michael Short, Ju Li                       | Engineered biological energy storage system. A path for systemable energy      |
| 272  | Farshid Salimijazi, Annette Rowe, Leah Trutschel<br>and Buz Barstow  | Engineered biological energy storage system: A path for sustainable energy     |
|      |                                                                      | A LCA of biomass torrefaction in inert and partially oxidative conditions      |
| 275  | Sonal Thengane, Jasmina Burek, Kevin Kung,                           |                                                                                |
| 211  | Daniel Sanchez, Ahmed Ghoniem<br>Robert Wilson and Matthew Shoulders | Direct air CO2 capture through biocatelysis. Teals from photosynthesis         |
| 311  |                                                                      | Direct air CO2 capture through biocatalysis: Tools from photosynthesis         |
| 313  | Lingshi Wang, Xiaobing Liu and Bamdad Bahar                          | Perforamcne analysis of a membrane-based ionic liquid desiccant (ILD)          |
| 224  | Neel Treatment Ali Berk                                              | dehumidifier                                                                   |
| 321  | Neal Trautman, Ali Razban, Jie Chen                                  | Chilled water system modeling and optimization                                 |
| 330  | Hyun-Kyu Choi and Joseph Kwon                                        | Model-based control of alkaline pretreatment for enhanced cellulose            |
|      |                                                                      | accessible surface area                                                        |
| 331  | Borui Cui, Jin Dong, Jeffery Munk, Jian Sun, Teja                    | Battery-equivalent model and load flexibility analysis of commercial           |
|      | Kuruganti                                                            | refrigeration system                                                           |
| 340  | Robert Schuetzle and Elizabeth Myers                                 | Producing net zero and low carbon liquid fuels from carbon dioxide or flare    |
| -    |                                                                      | gas                                                                            |
| 345  | Sonit Balyan, Tuhin S. Khan, Kamal K.                                | Molecular level engineering of catalytic active sites in Mo/HZSM-5 catalyst f  |
|      | Pant and M. Ali Haider                                               | direct methane conversion to fuels and chemicals                               |
| 353  | Ashutosh Rai, Rory Monaghan, Dominic Joyce                           | Waste to wheels: A circular economy approach of decarbonizing forestry         |
| 000  |                                                                      | timber fleets                                                                  |
| 359  | Xiangkun Elvis Cao, Tingwei Liu, Tao Hong and                        | Multiphysics modeling and optimization of a glass waveguide based              |
|      | David Erickson                                                       | photothermal reactor for CO2 reduction                                         |

# **Geoenergy Development and Emission Mitigation**

| I.D. | Authors                                        | Title                                                                         |
|------|------------------------------------------------|-------------------------------------------------------------------------------|
| 24   | Wennan Long and Adam Brandt                    | Field-level GHG emision estimation of thermal EOR method                      |
| 51   | Jeffrey Rutherford and Adam Brandt             | Closing the gap: Investigating the persistent underestimation of methane      |
| 21   |                                                | inventories                                                                   |
| 100  | Dandina Rao                                    | HydroFlame – A new "Fire-in-Water" technology and its economic and            |
| 100  |                                                | environmental impact on oil and gas industry                                  |
| 101  | Dandina Rao and Bikash Saikia                  | Gas-assisted gravity drainage – A new technology to reduce industrial CO2     |
| 101  |                                                | emissions                                                                     |
|      | Daniel J. Varon, Jason McKeever, Dylan Jervis, | Satellite discovery of anomalously large methane point sources from oil/gas   |
| 123  | Joannes D. Maasakkers, Sudhanshu Pandey,       | production                                                                    |
| 123  | Sander Houweling, Ilse Aben, Tia Scarpelli and |                                                                               |
|      | Daniel J. Jacob                                |                                                                               |
|      | Edoardo Rossi, Benjamin M. Adams, Daniel       | Advanced drilling technologies to improve the economics of deep geo-          |
| 148  | Vogler, Philipp Rudolf von Rohr, Hans-Olivier  | resource utilization                                                          |
|      | Schiegg and Martin O. Saar                     |                                                                               |
| 151  | Scholastica N. Emenike and Duabari S. Aziaka   | Optimization of gas loss and CO2 emission during disruption on a natural ga   |
| 101  |                                                | network                                                                       |
| 215  | Benjamin Adams, Martin Saar, Jeffrey Bielicki, | Using geologically sequestered CO2 to generate and store geothermal           |
| 215  | Jonathan Ogland-Hand and Mark Fleming          | electricity: CO2 plume geothermal                                             |
| 280  | Elena Berman and Steven Deiker                 | Source-attributable, quantitative results from a basin-wide survey of new     |
| 280  |                                                | Mexico permian methane emissions                                              |
| 294  | Saira, Emmanuel Ajoma and Furqan Le-Hussain    | Improving the technical feasibility of CO2 storage in oil reservoirs          |
| 303  | Kaiyu Cao, Prashanth Siddhamshetty, Yuchan     | Evaluating the spatiotemporal variability of water recovery ratios of shale g |
| 303  | Ahn, Mahmound El-Halwagi and Joseph Kwon       | wells and their effects on shale gas development design                       |
| 305  | Jyoti Phirani and Neelam Choudhary             | Quantifying uncertainty in methane hydrate reservoir simulations              |
| 310  | Ritchie Stagg                                  | The use of enclosed combustion in reducing GHG emissions                      |
| 343  | Jiang Bian, Xuewen Cao, Dan Guo, Wenjuan Sun,  | Treatment of natural gas with varying CO2 concentration using supersonic      |
| 545  | Xiaodan Song and Wenming Jiang                 | <u>flows</u>                                                                  |
| 364  | Renfeng Yang                                   | Difference analysis on steady-state and unsteady-state relative permeability  |
| 304  |                                                | <u>curves</u>                                                                 |
| 365  | Anand Pradhan                                  | Utilizing emerging technologies to reduce methane emissions                   |

# **Energy Policy and Economics**

| Authors                                                                                                                                    | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shuchen Cong, Destenie Nock and Ed Rubin                                                                                                   | Quantifying the carbon footprint of a metropolitan food system: methods and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                            | <u>uncertainties</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| S.E. Erturan, H. M. Cekirge and R. S. Thorsen                                                                                              | Planet earth capacity factor and new look criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Holger Schloer and Sandra Venghaus                                                                                                         | The distribution of a global public bad and the key sectors of sustainable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                            | development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Boling Zhang, Xiaoyi Yang and Ruipeng Tong                                                                                                 | Modeling health impacts of coal-based clean energy industry in China: LCA-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                            | based and WTP-oriented studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ross Baldick                                                                                                                               | The role of sector coupling in renewable integration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| David Timmons and Rob Terwel                                                                                                               | Technical and economic feasibility of carbon-neutral aviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ehsan Vahidi, Randolph Kirchain and Jeremy                                                                                                 | Potential greenhouse gas mitigation in the United States building sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gregory                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| William French                                                                                                                             | Mobilizing America to promote climate security                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Thomas Longden, Fiona Beck and Frank Jotzo                                                                                                 | Assessing the long term costs of blue and green hydrogen under zero-emissions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            | <u>objectives</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Andrew Ruttinger, Sakineh Tavakoli and Sarah                                                                                               | Evaluating technology and market scenarios for the deployment of profitable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Jordaan                                                                                                                                    | carbon capture, utilization, and storage processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Nicola Cantore, Massimiliano Cali, Leonardo                                                                                                | Energy taxation for inclusive and sustainable industrial development: some                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| lacovone, Mariana Pereira - Lopez, Giorgio                                                                                                 | empirical evidence for manufacturing firms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Presidente, Juergen Amann, Valentin Todorov                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| and Charles Fang Chin Cheng                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Eduardo Mello and Peter Bauer                                                                                                              | On energy optimal speed trajectories in urban traffic: implementation options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Kasper Emil Thorvaldsen, Magnus Korpås and                                                                                                 | Methodology for achieving zero-emission for a low-energy building over a year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Karen Byskov Lindberg                                                                                                                      | using demand side flexibility strategically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Amber Fong and G. Scott Samuelsen                                                                                                          | Renewable hydrogen production pathways from biomass via anaerobic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                            | digestion for California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Olga Savchuk, Jan Willem Turkstra, Irin Minne                                                                                              | User-centered design and evaluation of decentralized energy systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bouwman, Henri C. Moll                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sandra Venghaus                                                                                                                            | Beyond energy: the policy-driven structural change process from lignite mining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                            | to a sustainable bioeconomy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Jennifer Morris, Mathilde Fajardy, Howard                                                                                                  | The economics of BECCS deployment in a 1.5C or 2C world                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Herzog, Niall Mac Dowell and Sergey Paltsev                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Renee Obringer, Sayanti Mukherjee and                                                                                                      | Modeling sectoral electricity—natural gas demand and climate nexus: a data-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                            | driven multivariate predictive framework                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                            | Distributed dynamic economic dispatch using alternating direction method of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                            | multipliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Raphael Wu and Giovanni Sansavini                                                                                                          | Balancing costs, emissions and security in Active Distribution Networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Razi Nalim and Bhumika Sule                                                                                                                | Clean pathways from fossil fuels to the hydrogen-carbon economy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Razi Nalim and Bhumika Sule<br>Eric Boria, Anton Rozhkov, Abolfazl Seyrfar and<br>Ning Ai<br>John Schramski, Jasmine Badiee and Trevor     | Clean pathways from fossil fuels to the hydrogen-carbon economy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Razi Nalim and Bhumika SuleEric Boria, Anton Rozhkov, Abolfazl Seyrfar and<br>Ning AiJohn Schramski, Jasmine Badiee and Trevor<br>Richards | Clean pathways from fossil fuels to the hydrogen-carbon economy         Identifying the need for an energy urban planning role         Energy, design theory, and the future of technology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Razi Nalim and Bhumika Sule<br>Eric Boria, Anton Rozhkov, Abolfazl Seyrfar and<br>Ning Ai<br>John Schramski, Jasmine Badiee and Trevor     | Clean pathways from fossil fuels to the hydrogen-carbon economy<br>Identifying the need for an energy urban planning role                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                            | Shuchen Cong, Destenie Nock and Ed RubinS.E. Erturan, H. M. Cekirge and R. S. ThorsenHolger Schloer and Sandra VenghausBoling Zhang, Xiaoyi Yang and Ruipeng TongRoss BaldickDavid Timmons and Rob TerwelEhsan Vahidi, Randolph Kirchain and Jeremy<br>GregoryWilliam FrenchThomas Longden, Fiona Beck and Frank JotzoAndrew Ruttinger, Sakineh Tavakoli and Sarah<br>JordaanNicola Cantore, Massimiliano Cali, Leonardo<br>lacovone, Mariana Pereira - Lopez, Giorgio<br>Presidente, Juergen Amann, Valentin Todorov<br>and Charles Fang Chin ChengEduardo Mello and Peter BauerKasper Emil Thorvaldsen, Magnus Korpås and<br>Karen Byskov LindbergAmber Fong and G. Scott SamuelsenOlga Savchuk, Jan Willem Turkstra, Irin Minne<br>Bouwman, Henri C. Moll<br>Sandra VenghausJennifer Morris, Mathilde Fajardy, Howard<br>Herzog, Niall Mac Dowell and Sergey Paltsev |

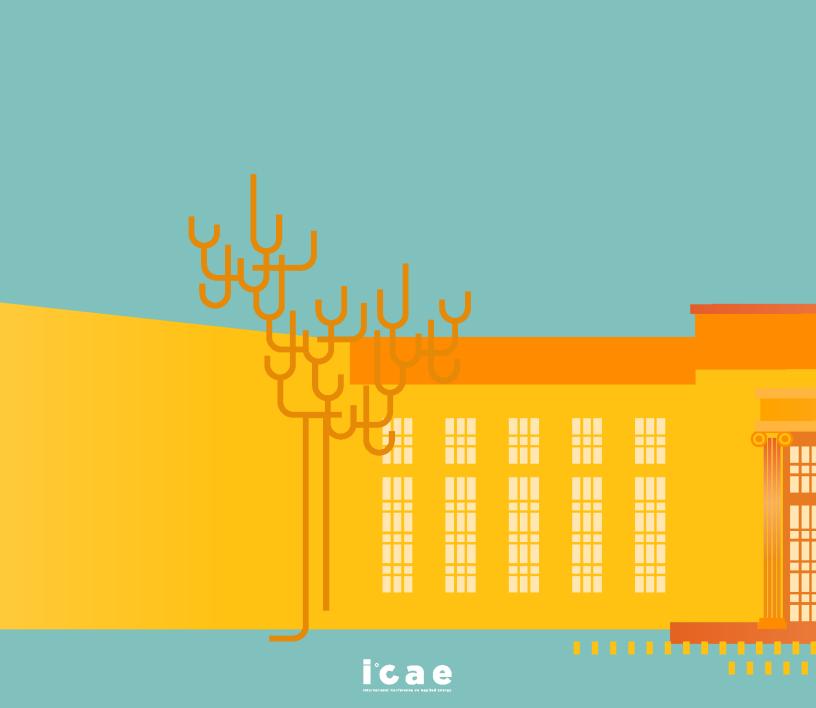
# **Poster Presentations**

## E-Poster Track 1

\*Please click title to view poster

| I.D. | Authors                                                                                                                                                                      | Title                                                                                                                                         |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 18   | Xiangyu Gao, Lin Zhang, Zhuo Xu and Fei Li                                                                                                                                   | High output power density of a shear-mode piezoelectric energy harvester based on<br>Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals |
| 31   | Wenfeng Liu, Chuanyi Tang, Xiaolun Yan, Huazhi<br>Xin, Xin Liu and Xubin Zhao                                                                                                | Apply Grey Relation Analysis to identify and characterize inter-well interference based<br>on the tracer monitoring in the Mahu Sag           |
| 70   | Fang Liu                                                                                                                                                                     | Structure and control co-optimization for a CO2 heat pump with thermal storages                                                               |
| 72   | Feng Wang, Lin Zhang and Shaohua Jiang                                                                                                                                       | Ultra-High phosphorus-doped wood-derived carbon enabling high-capacity for supercapacitor                                                     |
| 84   | Jingqi Tan, Jiaqi Luo, Jianjian Wei and Tao Jin                                                                                                                              | Performance of a modified two-phase thermofluidic oscillator with low GWP working fluids for low-grade waste heat recovery                    |
| 142  | Tongtong Zhang, Xiaohui She and Yulong Ding                                                                                                                                  | Liquid air energy storage for shifting the nitrogen demand of the ammonia synthesis system                                                    |
| 159  | Zhifeng Tang, Huihua Feng and Yao Wang                                                                                                                                       | Experiment evaluation on starting process of opposed-piston free-piston linear generator                                                      |
| 171  | Afnan Mashat, Nan Shi and Amr Abdel-Fattah                                                                                                                                   | Autonomous nano-capsules for subsurface remediation and energy harvesting applications                                                        |
| 190  | Ying Zhuang, Wei Pei, Li Kong and Shizhong Zhang                                                                                                                             | An autonomous optimization model for multi-source heat-power combined microgrid<br>considering hydrogen production                            |
| 195  | Haitao Zhao                                                                                                                                                                  | Enabling the catalytic oxidation of Hg0 by O2 via the development of novel CeO2- $MoO3/\gamma$ -Al2O3 catalysts and its mechanism             |
| 201  | Yakun Liu, Earle Williams, Joan Montanyà,<br>Zhengcai Fu, Qibin Zhou, Anirban Guha, Ryan<br>Said, Jeff Lapierre, Yeqing Wang, Haitao Zhao,<br>Stan Heckman and Michael Stock | Global lightning environment for wind turbines in wind energy harvesting                                                                      |
| 230  | Yangyuan Ji, Yuhang Fang, David Warsinger and Jeffrey Moran                                                                                                                  | Photocatalytic self-propelled micromotors for acceleration of advanced oxidation processes                                                    |
| 248  | Anand Selveindran                                                                                                                                                            | CO2-EOR and carbon storage in a mature Indian oilfield: from laboratory study to pilot design                                                 |
| 255  | Bo Li, Daniel Kammen, Minyou Chen and Ziming<br>Ma                                                                                                                           | Offshore wind power in China: remake mix and structure of power system                                                                        |
| 344  | Shun Liu                                                                                                                                                                     | Test experiment of minimum miscibility composition of hydrocarbon gas drive in abnormal high temperature and pressure well                    |
| 346  | Kuanrong Qiu, Hajo Ribberink and Evgueniy<br>Entchev                                                                                                                         | Advantage and feasibility of wireless charging electric bus systems                                                                           |
| 348  | Kuanrong Qiu and Evgueniy Entchev                                                                                                                                            | Biofuel-fired ORC-based micro-CHP and working fluid selection                                                                                 |
| 350  | Tiancheng Ji, Peixue Jiang and Ruina Xu                                                                                                                                      | Disclosing carbon-water-cost nexus on China's road to greener shale gas via CO2-<br>enhanced shale gas recovery (CO2-ESG)                     |
| 361  | Singaram Lakshmanan and Kannaiyan Gnanavel                                                                                                                                   | Modelling and Thermodynamic analysis of small scale compressed air energy storage systems with thermal recovery                               |
| 366  | Wei Du, Qi Zhou, Kaina Qiu, Xiaotian Mu, Honglei<br>Ding and Weiguo Pan                                                                                                      | Numerical simulation and response surface analysis on combustion optimization of coal-<br>fired boiler                                        |
| 367  | Jiwei Wu, Hualin Wang, Yuan Huang, Haitao Lin<br>and Qiang Fu                                                                                                                | Hydrocyclone micrometer sized separation technology for exploitation of natural gas<br>hydrate                                                |
| 368  | Prakash Chinnakutti and Dr Gnanavel Kanniayan                                                                                                                                | Design and analysis of spinning reserve gravity hydro energy storage technology                                                               |
| 369  | Qingzi Zhu, Xu Tan, Mario Caccia, Mehdi<br>Peshahang, Bamdad Barari, Caleb Amy, Colin C.<br>Kelsall, Kenneth Sandhage and Asegun Henry                                       | ZrC/W-based Printed Circuit Heat Exchanger for Generation 3 CSP                                                                               |
| 370  | Qingzi Zhu, Bamdad Barari, Mehdi Peshahang,<br>Mario Caccia, Xu Tan, Michael Bichnevicius,<br>Kenneth Sandhage and Asegun Henry                                              | Hydraulics performance of a 2MW molten salt-sCO2 PCHE                                                                                         |

# **Poster Presentations**


## E-Poster Track 2

\*Please click title to view poster

| I.D. | Authors                                            | Title                                                                                 |
|------|----------------------------------------------------|---------------------------------------------------------------------------------------|
| 7    | Cong Zhang, Hairong Li, Ke Peng, Junge Li and      | Emergency control method of industrial park integrated energy system based on energy  |
| ,    | Shunqi Zeng                                        | <u>conversion</u>                                                                     |
| 54   | Yunqi Wang, Jing Qiu, Xiao Han, Lingling Sun,      | Operational planning for integrated energy system with carbon flow and trading        |
|      | Hengrong Zhang and Yuan Ma                         | scheme towards emission reduction                                                     |
| 73   | Tanveer Hussain, Sid Suryanarayanan and Sm         | An improved transmission switching algorithm for managing Post-(N-1) contingencies in |
| /3   | Shafiul Alam                                       | electricity networks                                                                  |
| 94   | Jinyu Chen, Haoran Zhang, Wenjing Li, Yi Sui,      | An investigation on the emission performance of ride-hailing                          |
| 54   | Xuan Song, Ryosuke Shibasak                        |                                                                                       |
| 98   | Drake Hernandez and Emre Gencer                    | Techno-economic Analysis of Balancing California's Power System on a Seasonal Basis   |
| 58   |                                                    | with Hydrogen and Lithium-Ion Batteries                                               |
| 143  | Yang Shichun, Feng Song, Xie Hehui, Liu Jian,      | Connected HEVs energy management strategy research under the road slope and traffic   |
| 143  | Chen Fei and Hua Yang                              | information preview                                                                   |
| 147  | Shichun Yang, Hehui Xie, Fei Chen, Jian Liu, Song  | Research on energy management strategy of hybrid electric vehicles based on           |
| 147  | Feng and Junbing Zhang                             | hierarchical control in the connected environment                                     |
| 158  | Wen-Long Shang, Huibo Bi and Yanyan Chen           | Environmental benefits of bike sharing based on limited trip data                     |
| 162  | Tianyu Yang, Qinglai Guo and Hongbin Sun           | A three-stage incentive scheme for integrated energy-traffic systems using deep Q-    |
| 102  |                                                    | learning network                                                                      |
| 165  | Abdullah Algarni, Sid Suryanarayanan and           | Initial studies on integrating demand response aggregators and carbon taxation into   |
| 105  | Howard Jay Siegel                                  | electricity markets                                                                   |
| 170  | Kamini Singh and Anoop Singh                       | E-mobility: A shifting paradigm of consumers towards ev-prosumers                     |
| 209  | Zahra Heydarzadeh, Michael Mackinnon, Clinton      | Comprehensive study of major methane emissions sources from natural gas system and    |
| 209  | Thai, Jeffrey Reed and Jack Brouwer                | their dependency to throughput                                                        |
| 223  | Juanjuan Hou, Lancui Liu, Yusheng Liu and Jiutian  | Study on the potential and path of collaborative governance of energy and water in    |
| 225  | Zhang                                              | <u>China</u>                                                                          |
| 270  | Yuanda Hong, Wu Deng, Ezeh Collins, Sung-Hugh      | Energy, environment and economic (3E) multi decision-making model for energy-         |
| 270  | Hong, Haitao Zhao and Zhenhua Rui                  | efficient retrofit frameworks (ERF) on existing buildings - case study in Shanghai    |
| 322  | Hongliang Sun, Yiwei Shao, Yulong Zhao             | Microstructured graphene anode fabrication for microbial fuel cell using light        |
| 325  | Abolfazl Seyrfar, Hossein Ataei and Sybil Derrible | <u>A review of building energy benchmarking</u>                                       |
| 355  | Tong Xu and Longyu Shi                             | Energy, water, and land resources consumption of the public building: a case of the   |
| 555  |                                                    | people's bank of China                                                                |
| 358  | Behzad Golparvar and Ruo-Qian Wang                 | Predicting the output power uncertainty of an offshore wind turbine based on          |
|      |                                                    | environmental conditions                                                              |
| 362  | Wenjing Lyu and Jin Liu                            | Artificial intelligence in the energy sector                                          |
|      |                                                    |                                                                                       |





